序 言

尊敬的用户:

您好! 感谢您选购科电仪器的 MC-3000P 涂层测厚仪,为 了正确使用本仪器,请您在使用之前仔细阅读说明书,特别是 有关"使用方法"和"注意事项"的部分。

如果您已经阅读完本说明书全文,建议您将此说明书进行 妥善保管,与仪器一同放置或者放在您随时可以查阅的地方, 以便在将来的使用过程中及时翻阅。

该产品使用说明书在需要时我们会作适当的修改,公司保 留随时改进和革新仪器而不事先通知的权利。

本说明书的著作版权归我公司所有,未经我公司书面许可 不得以任何目的、任何手段复印或传播书中的部分或全部内容。

欢迎登录 http://www.kedianyiqi.com 或来电垂询。

目 录

第一章	概论	1
1.1	仪器特点	1
1.2	工作原理	1
1.3	应用范围	1
第二章	仪器参数及功能	1
2.1	技术参数	1
第三章	仪器操作	2
3.1	仪器准备	2
3.2	仪器简介	2
	3.2.1 按键名称及作用	2
	3.2.2 测量界面简介	3
3.3	使用方法	4
	3.3.1 开机前准备	4
	3.3.2 开机	5
	3. 3. 3 测量	5
	3.3.4 在测量状态下存储	5
3.4	菜单操作	5
	3.4.1 校准方式	5
	3.4.1.1 系统校准	6
	3.4.1.2 一点校准	6
	3.4.1.3 零点校准	7
	3.4.2存储管理	7
	3.4.2.1 查看数据	7
	3.4.2.2 清除数据	8

	3.4.2.3 存储地址 8
	3.4.3 测量模式 8
	3.4.3.1 精简模式 8
	3.4.3.2 监控模式 8
	3.4.3.3 统计模式
	3.4.4 仪器设置
	3.4.4.1 显示设置 9
	3.4.4.2 测量提示
	3.4.4.3 显示反转 9
	3.4.4.4 还原出厂10
第四章	影响测量的若干因素 10
4.1	基体的影响 10
4.2	试片的影响 11
4.3	磁场11
4.4	附着物质 11
4.5	探头的放置11
4.6	读数次数12
4.7	注意事项12
第五章	保养与维护12
5.1	保养12
5.2	电源检查12
5.3	维护12
附一 仪	(器及附件13

第一章 概论

1.1 仪器特点

MC-3000P 涂层测厚仪融入了工业设计理念,小巧的机身设 计使仪器操作更便携、简捷,大底盘结构使探头测量更稳定、 精准。仪器配有翻转显示、中英文选择、多种测量模式等功能, 使仪器更加适合工业现场的作业需求。

1.2 工作原理

Fe探头采用磁感应法测量铁磁性材料上的非磁性涂层的厚度,NFe探头采用电涡流法测量导电金属上的非导电涂层的厚度。

1.3 应用范围

仪器根据探头类型的不同,可以方便无损地测量磁性材料 上的非磁性涂层的厚度(磁性测头),或者测量导电基体上的非 导电涂层的厚度(非磁性测头)。

该仪器广泛应用于机械、汽车、造船、石油、化工、电镀、 喷塑、搪瓷、塑料等行业。

第二章 仪器参数及功能

2.1 技术参数

探头类型	F1. 2	N1. 2
测量原理	磁感应	电涡流
测量范围	0~1250 μ m	
基体最小平面直径 15mm		mm

最小曲率半径(凹)	6mm
最小曲率半径(凸)	2mm
测量精度(H 为厚度值)	± (1 [~] 3) %H±1μm 或H±2μm
显示精度	0 [~] 99.9µm: 0.1µm; 100 [~] 9999µm: 1µm;
探头类型	F 为磁性探头,N 为非磁性探头
基体临界厚度	F:1mm, N:0.5mm
存储方式	1000个存储数据
校准方式	系统校准、一点校准、零点校准
测量模式	精简模式、监控模式、统计模式
显示语言	中文、英文
恢复出厂设置	允许用户恢复到出厂时的状态
使用环境	相对湿度: ≤90%; 温度: -10℃~+40℃
供电电源	CR2450 纽扣电池
主机尺寸	145mm(L) *37mm(W) *22mm(H)
整机重量	约 220g(含电池)

第三章 仪器操作

3.1 仪器准备

新购仪器请参照"附一 仪器及附件",查看相关的附件是 否齐全。不全时请及时与厂家联系;若仪器损坏,请勿使用, 并尽快与厂家联系。

3.2 仪器简介

3.2.1 按键名称及作用

A、"ON/OFF"键:

a、开关键,实现仪器的开启和关闭;

b、返回键,在菜单操作界面下,按此键即可返

回上一界面。

B、"MODE"键: 菜单键:

a、测量界面下按此键进入主菜单;

b、子菜单下按此键为确认该选项;

KODIN

c、数值调整界面下按此键移动调整数值位。

C、"FN"键:调整键:

- a、测量界面下按此键存储当前测量值;
- b、子菜单下按此键为向下选择子菜单。
- c、数值调整界面为数值增加按键。

3.2.2 测量界面简介

图 2.1

图 3.1

3.3 使用方法

3.3.1 开机前准备

将仪器配带的钥匙扣插入电池后盖上长方形的开关槽,将 钥匙扣向逆时针方向转动,此时如下图 4.1.1;打开电池后盖, 如下图 4.1.2, 电路板弹片方向为电池负极方向,正极对应电池 后盖;把 CR2450 纽扣电池按正确极性装入电池舱内,效果如下 图 4.1.3;扣好电池盖,此时两个三角符号正对,如下图 4.1.4。

特别提醒:安装电池盖时,两个三角符号要相对应,若反向安装,将影响电池后盖的拆装,影响使用。 3.3.2 开机

按"ON/OFF"键(探头与基体或电磁场的距离务必要保持 10cm以上)开机,仪器进入开机界面。首先显示开机画面,然 后进入测量界面,即可进行测量。 3.3.3 测量

测量时务必将探头**垂直的**放在被测试件上,否则会影响到 测量的准确性。这在曲面或有弧度的工件上表现的尤为重要。 测量过程中可以通过开启不同的测量模式来帮助用户轻松监测 测量数据。

注意:测量时要注意测量标识,箭头标识消失后才能再次测量。 3.3.4 在测量状态下存储

在测量界面下,按"FN"键可存储测量数据值。每按一次 "FN"键,仪器会存储该测量数据值,存储地址会自动增加。 可以通过"存储管理"菜单下的"查看数据"子菜单来查看所 存储的测量厚度值。

3.4 菜单操作

MC-3000P 涂层测厚仪共包括四项主菜单,在测量界面按 "MODE"键进入主菜单界面。选择相应子菜单后,再次按"MODE" 键确定进入。

3.4.1 校准方式

MC-3000P 涂层测厚仪包含多种校准方式供用户选择。进入 "校准方式"菜单后,用户可以选择其中一种校准方式进行校 准。在一般情况下可直接进行测量。当仪器基体与被测工件基 体的电磁特性或者表面粗糙度差别较大时,可以选择**系统校准** 以保证测量的准确性。

3.4.1.1 系统校准

系统校准是推荐的校准方法,仪器在出厂前已经过技术人 员系统校准,为保证准确性也可在工作现场进行系统校准。

在校准方式菜单中选择"系统校准"选项,按"MODE"键 后,仪器进入系统校准模式。

本系统校准共需要校准五个标准样片,进入系统校准后首 先显示"基体"界面,此时要把探头垂直的放到被测工件的裸露 基体上进行测量。测量两次后如果测量没有错误操作,伴随着 蜂鸣器长鸣便进入第一个样片的测量。屏幕首先显示出厂时提 供的第一个样片值。如果显示的样片值和随机配置的样片值大 小不符,可以通过"FN"键、"MODE"键来进行加1或移位操作, 直到调整到显示值和真实值相同为止。调整完样片值之后即可 对第一个样片进行测量,测量两次无误后,伴随着蜂鸣器长鸣, 仪器进入下一个样片的校准。若测量两次后仍无蜂鸣器长鸣, 说明操作有误,重新测量一次即可。接下来四个样片的调整方 法同上。

当第五个样片校准完成后,仪器自动进入测量界面。此时 即完成了系统校准过程。以后就可以对被测件直接进行测量。

注意:样片校准时样片要按照由小到大的顺序进行,系统 校准时所选用的基体必须是平整的而且其表面要大于 30mm× 30mm。

3.4.1.2 一点校准

在测量过程当中,如果发现个别点的测量值偏差较大可以

KODIN

6

通过"一点校准"方法进行调整。

校准方法: 在校准方式菜单中选择"一点校准"选项, 然 后把一个已知厚度的被测试件作为标准样片, 先对该样片值进 行调整, 可以通过"FN"键、"MODE"键来进行加1或移位操作, 直到调整到显示值和真实值相同为止。调整完样片值之后即可 对样片进行测量, 测量两次无误后, 伴随着蜂鸣器长鸣, 仪器 校准成功, 自动进入测量界面。若测量两次后仍无蜂鸣器长鸣, 说明操作有误, 重新测量一次即可。

3.4.1.3 零点校准

仪器标配基体的电磁特性和表面粗糙度应当与待测试工件 基体的特性和表面粗糙度相似。如果两者差别稍大,可以在测 量测试件之前先进行零点校准。

校准方法: 在校准方式菜单中选择"零点校准"选项, 仪 器屏幕显示"基体"界面,此时将探头垂直的放在被测试件的裸 露基体上进行测量,测量两次,伴随着蜂鸣器长鸣即可完成基 体的校准,仪器自动进入测量界面。 3.4.2 存储管理

本仪器具有测量数据的存储和管理功能,最大可以存 1000 个数据。在该菜单下用户可以设置存储地址,也可以查看、删 除存储的测量数据。

3.4.2.1 查看数据

进入该菜单后,按"FN"键进行向下查看,按"MODE"键 进行向上查看。当选中某一个数据后,长按"MODE"键可删除 该数据。在弹出的"是否清空当前数据"界面,按"FN"键进 行移动选项,按"MODE"键确认选中的选项。按"ON/OFF"键 将返回到上级菜单中。

3.4.2.2 清除数据

在弹出的"是否清空全部数据"界面,按"FN"键进行移动选项,按"MODE"键确认选中的选项。选择"是"选项后等待清除所有数据,完成后返回至上级菜单。

3.4.2.3 存储地址

进入该菜单后,可以设置存储地址的序号。通过"MODE" 键切换调整位,按"FN"键加一调整,按"ON/OFF"键确认并 返回到上级菜单。

3.4.3 测量模式

为了适应不同的工作现场,科电仪器专门设计了下面3种 工作模式来满足各种用户的不同需要,选中相应测量模式后仪 器自动进入测量界面。

3.4.3.1 精简模式

在本测量模式下,测量数值以大号数字显示,仪器只显示 测量数据的基本信息,方便用户观看测量数据。

3.4.3.2 监控模式

在本测量模式下用户可以通过设置报警上、下限值来实时 监控工件厚度是否合格,测量数据一旦超出上下界限,仪器就 会显示超限符号,并通过急促的报警声来提示用户。下面介绍 一下具体的操作方法。

进入该菜单后,首先需要设置上限、下限、报警方式。按 "MODE"键切换不同的位数, "FN"键数值加一调整,设置完后, 选择开启监控选项,按"MODE"键开启监控模式。测量数据时, 仪器会在屏幕上显示用户设置的上限值、下限值、测量值,显 示界面如图 2.1 所示。当测量数据超出用户预先设定的上下界 限时, 仪器屏幕显示超差提示符号, 如果设置了报警声音和报 警灯光开启, 就会自动发出急促的报警声和红色的报警灯光。 3.4.3.3 统计模式

在本测量模式下,测量数据时仪器会在屏幕上实时显示测 量数据的最大值、最小值、平均值、测量次数。为保证统计数 据的有效性,仪器只统计8组数据,超过8组,仪器重新开始 新一轮的统计操作。

统计测量模式可以为用户提供更加直观、方便的数据分析, 进而对现场工件的优劣情况进行实时的观测。统计测量模式的 显示界面**如图 3.1 所示**。

3.4.4 仪器设置

3.4.4.1 显示设置

在"显示设置"菜单下可以中英文和背光选择,通过"MODE" 键进行切换, "FN"键进行选项更换。更换后对应的选项即被 选择,并自动记录下选项,下次开机时会保持设置的选项。 3.4.4.2 测量提示

在"测量提示"菜单下可以设置测量声音和测量灯光, "MODE"键进行切换, "FN"键进行选项更换,选择开启或者 关闭。更换后对应的选项即被选择,并自动记录下选项,下次 开机时会保持设置的选项。

3.4.4.3 显示反转

针对作业现场的不同需要,本仪器可以设置正向显示和反向显示,以方便用户根据现场的场景进行不同角度的观看。

3.4.4.4 还原出厂

当仪器遇到周围强电、磁场的干扰时,或者一些不当操作, 可能会造成仪器的参数紊乱或者无法正常校准,此时可以选择 "**还原出厂"**设置洗项。

进入该菜单选择确认后,仪器将还原到出厂时的状态。还 原出厂设置后仪器的所有功能恢复到出厂状态。用户需要重新 设置相关功能,并对仪器重新进行一次系统校准,以保证测量 的准确性。系统校准的方法参照 3. 4. 1. 1。

注意:一般情况下不要随意恢复出厂设置,否则会给用户带来 不必要的麻烦。恢复出厂设置后,仪器所有的设置都将还原到 出厂时的状态,用户存储的数据也全部被删除。

第四章 影响测量的若干因素

4.1 基体的影响

1、基体金属磁化

磁性法测量受基体金属磁性变化的影响(在实际应用中, 低碳钢磁性的变化可以认为是轻微的)。为了避免热处理、冷 加工等因素的影响,应使用与现场工件金属具有相同性质的基 体对仪器进行校对。

2、基体金属厚度

每一种仪器都有一个基体金属的临界厚度,大于这个厚度时,测量才不受基体厚度的影响。

3、表面粗糙度

基体金属和表面粗糙度对测量有影响。粗糙度增大,影响 增大。粗糙表面会引起系统误差和偶然误差。每次测量时,在

KODIN

10

不同位置上增加测量的次数,克服这种偶然误差。

如果基体金属粗糙还必须在未涂覆的粗糙相类似的基体金 属试件上取几个位置校对仪器的零点;或用没有腐蚀性的溶液 除去在基体金属上的覆盖层,再校对仪器零点。

4.2 试片的影响

1、边缘效应

本仪器对试片表面形状的陡变敏感,因此在靠近试片边缘 或内转角处进行测量是不可靠的。

2、曲率

试件的曲率对测量有影响,这种影响是随着曲率半径减小 明显增大。因此不应在试件超过允许的曲率半径的弯曲面上测 量。

3、试片的变形

探头会使软覆盖层试件产生变形现象,因此在这些试件上 测量会出现不太可靠的数据。

4.3 磁场

周围各种电气设备所产生的强磁场,会严重地干扰磁性测 量厚度的工作。应避免在强磁场或强电场附近使用本仪器,否 则仪器会显示未知的数据,或者无法正常工作。

4.4 附着物质

本仪器对那些妨碍探头与覆盖层表面紧密接触的附着物质 敏感。因此必须**清除附着物质**,以保证探头与覆盖层表面直接 接触。

4.5 探头的放置

探头的放置方式对测量有影响, 在测量中务必使探头与试

样表面保持垂直,否则会产生测量误差。

4.6 读数次数

通常仪器的每次读数并不完全相同。因此必须在每一测量 面积内取几个测量值,覆盖层厚度的局部差异,也要求在给定 的面积内进行测量,表面粗糙时更应如此。

4.7 注意事项

- 1、测量曲面及圆柱体,曲率半径较小时,应在未涂覆的工件上 校准,以保证测量精度。
- 2、在曲率半径较小的凹面内测量时,应重新系统校准。
- 3、随机配送基体应放在干燥处保存,如果发生生锈现象应及时 打磨处理,以免影响测量。
- 4、标准样片如发生变形、磨损现象建议及时与厂家联系,以免 影响仪器测量精度。

第五章 保养与维护

5.1 保养

避免仪器及探头受到强烈震动;避免将仪器置于过于潮湿、 过热和接触腐蚀性气体或液体的环境中; 仪器长期不用时应取 出电池。

5.2 电源检查

电源电压低时,仪器显示低电压符号,此时应及时按要求 更换电池,以免影响精度。

5.3 维护

MC-3000系列涂层测厚仪基本不需要维护。请注意维修只能 由科电公司售后服务部或授权代理商进行。 当仪器测量不正常时应作下述检查:

- (1)检查电池是否欠电,电池正负极是否接触良好。
- (2) 测量方法是否得当。

(3) 其他故障请送厂售后服务部修理,不得自行拆卸。

附一 仪器及附件

1,	MC-3000P 涂层测厚仪主机	一台
2,	CR2450 纽扣电池	两节
3,	手提箱	一个
4,	使用说明书	一份
5,	保修卡、合格证	一份